Skip to main content

王者百题 T59

x+xxxdx\begin{aligned} \int \sqrt{\frac{x+\sqrt{x}}{x-\sqrt{x}}}\mathrm{d}x \end{aligned}

观察到积分中没有出现常数,一般来说可以先尝试化简,例如消去因式 x\sqrt{x}.

x+xxxdx=x+1x1dx=(x+1)2(x1)(x+1)dx=x+1x1dx\begin{aligned} \int \sqrt{\frac{x+\sqrt{x}}{x-\sqrt{x}}}\mathrm{d}x&=\int \sqrt{\frac{\sqrt{x}+1}{\sqrt{x}-1}}\mathrm{d}x\\ &=\int \sqrt{\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}}\mathrm{d}x\\ &=\int \frac{\sqrt{x}+1}{\sqrt{x-1}}\mathrm{d}x \end{aligned}

这里已经出现了明显的双元构型,稍加处理即可获得结果。

p=xp=\sqrt{x}, q=x1q=\sqrt{x-1}, p2q2=1p^2-q^2=1, pdp=qdpp\mathrm{d}p=q\mathrm{d}p, pdp=xp\mathrm{d}p=x.

x+1x1dx=2(p+1)pdpq=2(p+1)qdqq=2dq+2pdq=q+2(12pq+p2q22dqp)=2q+pq+ln(p+q)+C=(2+x)x1+ln(x+x1)+C\begin{aligned} \int \frac{\sqrt{x}+1}{\sqrt{x-1}}\mathrm{d}x&=\int \frac{2(p+1)p\mathrm{d}p}{q}\\ &=\int \frac{2(p+1)q\mathrm{d}q}{q}\\ &=2\int \mathrm{d}q+2\int p\mathrm{d}q\\ &=q+2\left( \frac{1}{2}pq+\frac{p^2-q^2}{2}\int \frac{\mathrm{d}q}{p} \right)\\ &=2q+pq+\ln(p+q)+C\\ &=(2+\sqrt{x})\sqrt{x-1}+\ln(\sqrt{x}+\sqrt{x-1})+C \end{aligned}