lim (1-Πcos(nx))/x^2 的计算思路
计算极限
x→0limx21−cosxcos2xcos3x⋯cosnx
Method 1: Term-by-term Expansion
Notice that cosx=1−2x2+O(x3), then
x→0limx21−cosxcos2xcos3x⋯cosnx=x→0limx21−(1−2x2+O(x3))(1−2(2x)2+O(x3))⋯(1−2(nx)2+O(x3))
Comparing coefficients, the coefficient of x0 and x2 is
[x0][x2]=1⋅1⋅⋯⋅1=1=−212−222−⋯−2n2=−121n(n+1)(2n+1)
Then the limitation
x→0limx21−(1−2x2+O(x3))(1−2(2x)2+O(x3))⋯(1−2(nx)2+O(x3))=x→0limx21−(1−121n(n+1)(2n+1)x2+O(x3))=121n(n+1)(2n+1)+x→0limO(x)=121n(n+1)(2n+1)
Method 2: Global Expansion
donote cosxcos2x⋯cosnx as ∏k=1ncoskx,
f(x)f(0)→logf(x)→f(x)f′(x)→f′(x)f′(0)→f′′(x)f′′(0)=k=1∏ncoskx=1=k=1∑nlogcoskx=k=1∑ncoskx−ksinkx=k=1∑n(−ktankx)=f(x)k=1∑n(−ktankx)=f(0)⋅0=0=f′(x)k=1∑n(−ktankx)+f(x)k=1∑n(−k2sec2kx)=f(0)k=1∑n(−k2)=−61n(n+1)(2n+1)
Then
f(x)=1+2!−61n(n+1)(2n+1)(x−0)2+O(x3)=1−121n(n+1)(2n+1)x2+O(x3)
x→0limx21−f(x)=x→0limx21−(1−121n(n+1)(2n+1)x2+O(x3))=121n(n+1)(2n+1)+x→0limO(x)=121n(n+1)(2n+1)