也许会喜欢数学方程不是方糖时滞微分方程解法一例时滞微分方程解法一例解微分方程 f(x)−f(x−1)=f′(x)\begin{aligned} f(x)-f(x-1)=f'(x) \end{aligned}f(x)−f(x−1)=f′(x) 平凡解: f(x)=kx+bf(x)−f(x−1)=f′(x)\begin{aligned} f(x)&=kx+b\\ f(x)-f(x-1)&=f'(x) \end{aligned}f(x)f(x)−f(x−1)=kx+b=f′(x) 对于非平凡解,假定其为振荡周期解 f(x)=eAxcos(Bx+ϕ)f′(x)=AeAxcos(Bx+ϕ)−BeAxsin(Bx+ϕ)=−AeAxsin(ϕ)sin(Bx)+AeAxcos(ϕ)cos(Bx) −BeAxcos(ϕ)sin(Bx)−BeAxsin(ϕ)cos(Bx)\begin{aligned} f(x)&=\mathrm{e}^{ Ax }\cos(Bx+\phi)\\ f'(x)&=A e^{A x} \cos (B x+\phi )-B e^{A x} \sin (B x+\phi )\\ &=-A e^{A x} \sin (\phi ) \sin (B x)+A e^{A x} \cos (\phi ) \cos (B x)\\&\quad\;-B e^{A x} \cos (\phi ) \sin (B x)-B e^{A x} \sin (\phi ) \cos (B x) \end{aligned}f(x)f′(x)=eAxcos(Bx+ϕ)=AeAxcos(Bx+ϕ)−BeAxsin(Bx+ϕ)=−AeAxsin(ϕ)sin(Bx)+AeAxcos(ϕ)cos(Bx)−BeAxcos(ϕ)sin(Bx)−BeAxsin(ϕ)cos(Bx) 再来看左侧,有 f(x)−f(x−1)=eAxcos(Bx+ϕ)−eA(x−1)cos(B(x−1)+ϕ)=eA(x−1)sin(ϕ)sin(B(x−1))−eAxsin(ϕ)sin(Bx) −eA(x−1)cos(ϕ)cos(B(x−1))+eAxcos(ϕ)cos(Bx)=−eA(x−1)cos(B)cos(Bx)cos(ϕ)−eA(x−1)sin(B)sin(Bx)cos(ϕ) −eA(x−1)sin(B)cos(Bx)sin(ϕ)+eA(x−1)cos