Skip to main content

时滞微分方程解法一例

解微分方程

f(x)f(x1)=f(x)\begin{aligned} f(x)-f(x-1)=f'(x) \end{aligned}

平凡解:

f(x)=kx+bf(x)f(x1)=f(x)\begin{aligned} f(x)&=kx+b\\ f(x)-f(x-1)&=f'(x) \end{aligned}

对于非平凡解,假定其为振荡周期解

f(x)=eAxcos(Bx+ϕ)f(x)=AeAxcos(Bx+ϕ)BeAxsin(Bx+ϕ)=AeAxsin(ϕ)sin(Bx)+AeAxcos(ϕ)cos(Bx)  BeAxcos(ϕ)sin(Bx)BeAxsin(ϕ)cos(Bx)\begin{aligned} f(x)&=\mathrm{e}^{ Ax }\cos(Bx+\phi)\\ f'(x)&=A e^{A x} \cos (B x+\phi )-B e^{A x} \sin (B x+\phi )\\ &=-A e^{A x} \sin (\phi ) \sin (B x)+A e^{A x} \cos (\phi ) \cos (B x)\\&\quad\;-B e^{A x} \cos (\phi ) \sin (B x)-B e^{A x} \sin (\phi ) \cos (B x) \end{aligned}

再来看左侧,有

f(x)f(x1)=eAxcos(Bx+ϕ)eA(x1)cos(B(x1)+ϕ)=eA(x1)sin(ϕ)sin(B(x1))eAxsin(ϕ)sin(Bx)  eA(x1)cos(ϕ)cos(B(x1))+eAxcos(ϕ)cos(Bx)=eA(x1)cos(B)cos(Bx)cos(ϕ)eA(x1)sin(B)sin(Bx)cos(ϕ)  eA(x1)sin(B)cos(Bx)sin(ϕ)+eA(x1)cos(B)sin(Bx)sin(ϕ)  eAxsin(Bx)sin(ϕ)+eAxcos(Bx)cos(ϕ)\begin{aligned} f(x)-f(x-1)&=e^{A x} \cos (B x+\phi )-e^{A (x-1)} \cos (B (x-1)+\phi )\\ &=e^{A (x-1)} \sin (\phi ) \sin (B (x-1))-e^{A x} \sin (\phi ) \sin (B x)\\&\quad\;-e^{A (x-1)} \cos (\phi ) \cos (B (x-1))+e^{A x} \cos (\phi ) \cos (B x)\\ &=-e^{A (x-1)} \cos (B) \cos (Bx) \cos (\phi )-e^{A (x-1)} \sin (B) \sin (Bx) \cos (\phi )\\&\quad\;-e^{A (x-1)} \sin (B) \cos (Bx) \sin (\phi )+e^{A (x-1)} \cos (B) \sin ( Bx) \sin (\phi )\\&\quad\;-e^{A x} \sin ( Bx) \sin (\phi )+e^{A x} \cos ( Bx) \cos (\phi ) \end{aligned}

对比上下两式系数,即可得关于 AA, BB, ϕ\phi 的方程

R:[eAxsinBx]=AsinϕBcosϕ[eAxcosBx]=AcosϕBsinϕL:[eAxsinBx]=eAsinBcosϕ+eAcosBsinϕsinϕ[eAxcosBx]=eAcosBcosϕeAsinBsinϕ+cosϕ\begin{aligned} R:[\mathrm{e}^{ Ax }\sin Bx]&=-A\sin \phi-B\cos \phi\\ [\mathrm{e}^{ Ax }\cos Bx]&=A\cos \phi-B\sin \phi\\\\ L:[\mathrm{e}^{ Ax }\sin Bx]&=-\mathrm{e}^{ -A }\sin B\cos \phi+\mathrm{e}^{ -A }\cos B\sin \phi-\sin \phi\\ [\mathrm{e}^{ Ax }\cos Bx]&=-\mathrm{e}^{-A}\cos B\cos \phi-\mathrm{e}^{ -A }\sin B\sin \phi+\cos \phi \end{aligned}

即,满足以下方程的 AA, BB 构成原式的一组特解:

{eAsinBcosϕ+eAcosBsinϕsinϕ=AsinϕBcosϕeAcosBcosϕeAsinBsinϕ+cosϕ=AcosϕBsinϕ\begin{aligned} \begin{cases} -\mathrm{e}^{ -A }\sin B\cos \phi+\mathrm{e}^{ -A }\cos B\sin \phi-\sin \phi&=-A\sin \phi-B\cos \phi \\ -\mathrm{e}^{-A}\cos B\cos \phi-\mathrm{e}^{ -A }\sin B\sin \phi+\cos \phi&=A\cos \phi-B\sin \phi \end{cases} \end{aligned}