解微分方程
f(x)−f(x−1)=f′(x)
平凡解:
f(x)f(x)−f(x−1)=kx+b=f′(x)
对于非平凡解,假定其为振荡周期解
f(x)f′(x)=eAxcos(Bx+ϕ)=AeAxcos(Bx+ϕ)−BeAxsin(Bx+ϕ)=−AeAxsin(ϕ)sin(Bx)+AeAxcos(ϕ)cos(Bx)−BeAxcos(ϕ)sin(Bx)−BeAxsin(ϕ)cos(Bx)
再来看左侧,有
f(x)−f(x−1)=eAxcos(Bx+ϕ)−eA(x−1)cos(B(x−1)+ϕ)=eA(x−1)sin(ϕ)sin(B(x−1))−eAxsin(ϕ)sin(Bx)−eA(x−1)cos(ϕ)cos(B(x−1))+eAxcos(ϕ)cos(Bx)=−eA(x−1)cos(B)cos(Bx)cos(ϕ)−eA(x−1)sin(B)sin(Bx)cos(ϕ)−eA(x−1)sin(B)cos(Bx)sin(ϕ)+eA(x−1)cos(B)sin(Bx)sin(ϕ)−eAxsin(Bx)sin(ϕ)+eAxcos(Bx)cos(ϕ)
对比上下两式系数,即可得关于 A, B, ϕ 的方程
R:[eAxsinBx][eAxcosBx]L:[eAxsinBx][eAxcosBx]=−Asinϕ−Bcosϕ=Acosϕ−Bsinϕ=−e−AsinBcosϕ+e−AcosBsinϕ−sinϕ=−e−AcosBcosϕ−e−AsinBsinϕ+cosϕ
即,满足以下方程的 A, B 构成原式的一组特解:
{−e−AsinBcosϕ+e−AcosBsinϕ−sinϕ−e−AcosBcosϕ−e−AsinBsinϕ+cosϕ=−Asinϕ−Bcosϕ=Acosϕ−Bsinϕ